Copied to
clipboard

G = C10×C22⋊Q8order 320 = 26·5

Direct product of C10 and C22⋊Q8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C22⋊Q8, C233(C5×Q8), C4.63(D4×C10), (C22×C10)⋊6Q8, C221(Q8×C10), (C2×C20).524D4, C20.470(C2×D4), (C22×Q8)⋊3C10, C24.31(C2×C10), (C23×C20).25C2, (C23×C4).10C10, (Q8×C10)⋊48C22, C22.60(D4×C10), C10.57(C22×Q8), (C2×C10).343C24, (C2×C20).656C23, C10.182(C22×D4), (C23×C10).91C22, C23.70(C22×C10), C22.17(C23×C10), (C22×C20).444C22, (C22×C10).258C23, C2.6(D4×C2×C10), C2.3(Q8×C2×C10), (C10×C4⋊C4)⋊42C2, (C2×C4⋊C4)⋊15C10, (Q8×C2×C10)⋊15C2, (C2×C10)⋊5(C2×Q8), C4⋊C410(C2×C10), (C2×Q8)⋊8(C2×C10), C2.6(C10×C4○D4), (C5×C4⋊C4)⋊66C22, (C2×C4).135(C5×D4), C10.225(C2×C4○D4), (C2×C10).682(C2×D4), C22.30(C5×C4○D4), (C10×C22⋊C4).31C2, (C2×C22⋊C4).11C10, C22⋊C4.10(C2×C10), (C2×C4).12(C22×C10), (C22×C4).53(C2×C10), (C2×C10).230(C4○D4), (C5×C22⋊C4).144C22, SmallGroup(320,1525)

Series: Derived Chief Lower central Upper central

C1C22 — C10×C22⋊Q8
C1C2C22C2×C10C2×C20Q8×C10C5×C22⋊Q8 — C10×C22⋊Q8
C1C22 — C10×C22⋊Q8
C1C22×C10 — C10×C22⋊Q8

Generators and relations for C10×C22⋊Q8
 G = < a,b,c,d,e | a10=b2=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 450 in 322 conjugacy classes, 194 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C20, C20, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C23×C4, C22×Q8, C2×C20, C2×C20, C5×Q8, C22×C10, C22×C10, C22×C10, C2×C22⋊Q8, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C22×C20, C22×C20, Q8×C10, Q8×C10, C23×C10, C10×C22⋊C4, C10×C4⋊C4, C10×C4⋊C4, C5×C22⋊Q8, C23×C20, Q8×C2×C10, C10×C22⋊Q8
Quotients: C1, C2, C22, C5, D4, Q8, C23, C10, C2×D4, C2×Q8, C4○D4, C24, C2×C10, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C5×D4, C5×Q8, C22×C10, C2×C22⋊Q8, D4×C10, Q8×C10, C5×C4○D4, C23×C10, C5×C22⋊Q8, D4×C2×C10, Q8×C2×C10, C10×C4○D4, C10×C22⋊Q8

Smallest permutation representation of C10×C22⋊Q8
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(31 160)(32 151)(33 152)(34 153)(35 154)(36 155)(37 156)(38 157)(39 158)(40 159)(111 125)(112 126)(113 127)(114 128)(115 129)(116 130)(117 121)(118 122)(119 123)(120 124)(131 147)(132 148)(133 149)(134 150)(135 141)(136 142)(137 143)(138 144)(139 145)(140 146)
(1 48)(2 49)(3 50)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(31 160)(32 151)(33 152)(34 153)(35 154)(36 155)(37 156)(38 157)(39 158)(40 159)(51 67)(52 68)(53 69)(54 70)(55 61)(56 62)(57 63)(58 64)(59 65)(60 66)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 81)(78 82)(79 83)(80 84)(91 107)(92 108)(93 109)(94 110)(95 101)(96 102)(97 103)(98 104)(99 105)(100 106)(111 125)(112 126)(113 127)(114 128)(115 129)(116 130)(117 121)(118 122)(119 123)(120 124)(131 147)(132 148)(133 149)(134 150)(135 141)(136 142)(137 143)(138 144)(139 145)(140 146)
(1 79 67 96)(2 80 68 97)(3 71 69 98)(4 72 70 99)(5 73 61 100)(6 74 62 91)(7 75 63 92)(8 76 64 93)(9 77 65 94)(10 78 66 95)(11 131 40 114)(12 132 31 115)(13 133 32 116)(14 134 33 117)(15 135 34 118)(16 136 35 119)(17 137 36 120)(18 138 37 111)(19 139 38 112)(20 140 39 113)(21 147 159 128)(22 148 160 129)(23 149 151 130)(24 150 152 121)(25 141 153 122)(26 142 154 123)(27 143 155 124)(28 144 156 125)(29 145 157 126)(30 146 158 127)(41 86 54 105)(42 87 55 106)(43 88 56 107)(44 89 57 108)(45 90 58 109)(46 81 59 110)(47 82 60 101)(48 83 51 102)(49 84 52 103)(50 85 53 104)
(1 119 67 136)(2 120 68 137)(3 111 69 138)(4 112 70 139)(5 113 61 140)(6 114 62 131)(7 115 63 132)(8 116 64 133)(9 117 65 134)(10 118 66 135)(11 74 40 91)(12 75 31 92)(13 76 32 93)(14 77 33 94)(15 78 34 95)(16 79 35 96)(17 80 36 97)(18 71 37 98)(19 72 38 99)(20 73 39 100)(21 88 159 107)(22 89 160 108)(23 90 151 109)(24 81 152 110)(25 82 153 101)(26 83 154 102)(27 84 155 103)(28 85 156 104)(29 86 157 105)(30 87 158 106)(41 126 54 145)(42 127 55 146)(43 128 56 147)(44 129 57 148)(45 130 58 149)(46 121 59 150)(47 122 60 141)(48 123 51 142)(49 124 52 143)(50 125 53 144)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,160)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124)(131,147)(132,148)(133,149)(134,150)(135,141)(136,142)(137,143)(138,144)(139,145)(140,146), (1,48)(2,49)(3,50)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,160)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(51,67)(52,68)(53,69)(54,70)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124)(131,147)(132,148)(133,149)(134,150)(135,141)(136,142)(137,143)(138,144)(139,145)(140,146), (1,79,67,96)(2,80,68,97)(3,71,69,98)(4,72,70,99)(5,73,61,100)(6,74,62,91)(7,75,63,92)(8,76,64,93)(9,77,65,94)(10,78,66,95)(11,131,40,114)(12,132,31,115)(13,133,32,116)(14,134,33,117)(15,135,34,118)(16,136,35,119)(17,137,36,120)(18,138,37,111)(19,139,38,112)(20,140,39,113)(21,147,159,128)(22,148,160,129)(23,149,151,130)(24,150,152,121)(25,141,153,122)(26,142,154,123)(27,143,155,124)(28,144,156,125)(29,145,157,126)(30,146,158,127)(41,86,54,105)(42,87,55,106)(43,88,56,107)(44,89,57,108)(45,90,58,109)(46,81,59,110)(47,82,60,101)(48,83,51,102)(49,84,52,103)(50,85,53,104), (1,119,67,136)(2,120,68,137)(3,111,69,138)(4,112,70,139)(5,113,61,140)(6,114,62,131)(7,115,63,132)(8,116,64,133)(9,117,65,134)(10,118,66,135)(11,74,40,91)(12,75,31,92)(13,76,32,93)(14,77,33,94)(15,78,34,95)(16,79,35,96)(17,80,36,97)(18,71,37,98)(19,72,38,99)(20,73,39,100)(21,88,159,107)(22,89,160,108)(23,90,151,109)(24,81,152,110)(25,82,153,101)(26,83,154,102)(27,84,155,103)(28,85,156,104)(29,86,157,105)(30,87,158,106)(41,126,54,145)(42,127,55,146)(43,128,56,147)(44,129,57,148)(45,130,58,149)(46,121,59,150)(47,122,60,141)(48,123,51,142)(49,124,52,143)(50,125,53,144)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,160)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124)(131,147)(132,148)(133,149)(134,150)(135,141)(136,142)(137,143)(138,144)(139,145)(140,146), (1,48)(2,49)(3,50)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,160)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(51,67)(52,68)(53,69)(54,70)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124)(131,147)(132,148)(133,149)(134,150)(135,141)(136,142)(137,143)(138,144)(139,145)(140,146), (1,79,67,96)(2,80,68,97)(3,71,69,98)(4,72,70,99)(5,73,61,100)(6,74,62,91)(7,75,63,92)(8,76,64,93)(9,77,65,94)(10,78,66,95)(11,131,40,114)(12,132,31,115)(13,133,32,116)(14,134,33,117)(15,135,34,118)(16,136,35,119)(17,137,36,120)(18,138,37,111)(19,139,38,112)(20,140,39,113)(21,147,159,128)(22,148,160,129)(23,149,151,130)(24,150,152,121)(25,141,153,122)(26,142,154,123)(27,143,155,124)(28,144,156,125)(29,145,157,126)(30,146,158,127)(41,86,54,105)(42,87,55,106)(43,88,56,107)(44,89,57,108)(45,90,58,109)(46,81,59,110)(47,82,60,101)(48,83,51,102)(49,84,52,103)(50,85,53,104), (1,119,67,136)(2,120,68,137)(3,111,69,138)(4,112,70,139)(5,113,61,140)(6,114,62,131)(7,115,63,132)(8,116,64,133)(9,117,65,134)(10,118,66,135)(11,74,40,91)(12,75,31,92)(13,76,32,93)(14,77,33,94)(15,78,34,95)(16,79,35,96)(17,80,36,97)(18,71,37,98)(19,72,38,99)(20,73,39,100)(21,88,159,107)(22,89,160,108)(23,90,151,109)(24,81,152,110)(25,82,153,101)(26,83,154,102)(27,84,155,103)(28,85,156,104)(29,86,157,105)(30,87,158,106)(41,126,54,145)(42,127,55,146)(43,128,56,147)(44,129,57,148)(45,130,58,149)(46,121,59,150)(47,122,60,141)(48,123,51,142)(49,124,52,143)(50,125,53,144) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(31,160),(32,151),(33,152),(34,153),(35,154),(36,155),(37,156),(38,157),(39,158),(40,159),(111,125),(112,126),(113,127),(114,128),(115,129),(116,130),(117,121),(118,122),(119,123),(120,124),(131,147),(132,148),(133,149),(134,150),(135,141),(136,142),(137,143),(138,144),(139,145),(140,146)], [(1,48),(2,49),(3,50),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(31,160),(32,151),(33,152),(34,153),(35,154),(36,155),(37,156),(38,157),(39,158),(40,159),(51,67),(52,68),(53,69),(54,70),(55,61),(56,62),(57,63),(58,64),(59,65),(60,66),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,81),(78,82),(79,83),(80,84),(91,107),(92,108),(93,109),(94,110),(95,101),(96,102),(97,103),(98,104),(99,105),(100,106),(111,125),(112,126),(113,127),(114,128),(115,129),(116,130),(117,121),(118,122),(119,123),(120,124),(131,147),(132,148),(133,149),(134,150),(135,141),(136,142),(137,143),(138,144),(139,145),(140,146)], [(1,79,67,96),(2,80,68,97),(3,71,69,98),(4,72,70,99),(5,73,61,100),(6,74,62,91),(7,75,63,92),(8,76,64,93),(9,77,65,94),(10,78,66,95),(11,131,40,114),(12,132,31,115),(13,133,32,116),(14,134,33,117),(15,135,34,118),(16,136,35,119),(17,137,36,120),(18,138,37,111),(19,139,38,112),(20,140,39,113),(21,147,159,128),(22,148,160,129),(23,149,151,130),(24,150,152,121),(25,141,153,122),(26,142,154,123),(27,143,155,124),(28,144,156,125),(29,145,157,126),(30,146,158,127),(41,86,54,105),(42,87,55,106),(43,88,56,107),(44,89,57,108),(45,90,58,109),(46,81,59,110),(47,82,60,101),(48,83,51,102),(49,84,52,103),(50,85,53,104)], [(1,119,67,136),(2,120,68,137),(3,111,69,138),(4,112,70,139),(5,113,61,140),(6,114,62,131),(7,115,63,132),(8,116,64,133),(9,117,65,134),(10,118,66,135),(11,74,40,91),(12,75,31,92),(13,76,32,93),(14,77,33,94),(15,78,34,95),(16,79,35,96),(17,80,36,97),(18,71,37,98),(19,72,38,99),(20,73,39,100),(21,88,159,107),(22,89,160,108),(23,90,151,109),(24,81,152,110),(25,82,153,101),(26,83,154,102),(27,84,155,103),(28,85,156,104),(29,86,157,105),(30,87,158,106),(41,126,54,145),(42,127,55,146),(43,128,56,147),(44,129,57,148),(45,130,58,149),(46,121,59,150),(47,122,60,141),(48,123,51,142),(49,124,52,143),(50,125,53,144)]])

140 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P5A5B5C5D10A···10AB10AC···10AR20A···20AF20AG···20BL
order12···222224···44···4555510···1010···1020···2020···20
size11···122222···24···411111···12···22···24···4

140 irreducible representations

dim111111111111222222
type+++++++-
imageC1C2C2C2C2C2C5C10C10C10C10C10D4Q8C4○D4C5×D4C5×Q8C5×C4○D4
kernelC10×C22⋊Q8C10×C22⋊C4C10×C4⋊C4C5×C22⋊Q8C23×C20Q8×C2×C10C2×C22⋊Q8C2×C22⋊C4C2×C4⋊C4C22⋊Q8C23×C4C22×Q8C2×C20C22×C10C2×C10C2×C4C23C22
# reps12381148123244444161616

Matrix representation of C10×C22⋊Q8 in GL5(𝔽41)

400000
018000
001800
000250
000025
,
400000
01000
004000
00010
00001
,
10000
040000
004000
00010
00001
,
10000
01000
00100
0004039
00011
,
10000
004000
040000
0003414
000147

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,25,0,0,0,0,0,25],[40,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,1,0,0,0,39,1],[1,0,0,0,0,0,0,40,0,0,0,40,0,0,0,0,0,0,34,14,0,0,0,14,7] >;

C10×C22⋊Q8 in GAP, Magma, Sage, TeX

C_{10}\times C_2^2\rtimes Q_8
% in TeX

G:=Group("C10xC2^2:Q8");
// GroupNames label

G:=SmallGroup(320,1525);
// by ID

G=gap.SmallGroup(320,1525);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,560,1149,568,3446]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^2=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽